Functions
clapconv.h File Reference
#include <polys/monomials/ring.h>
#include <factory/factory.h>

Go to the source code of this file.

Functions

poly convFactoryPSingP (const CanonicalForm &f, const ring r)
 
CanonicalForm convSingPFactoryP (poly p, const ring r)
 
int convFactoryISingI (const CanonicalForm &f)
 
CanonicalForm convSingAPFactoryAP (poly p, const Variable &a, const ring r)
 
poly convFactoryAPSingAP (const CanonicalForm &f, const ring r)
 
poly convFactoryAPSingAP_R (const CanonicalForm &f, int par_start, int var_start)
 
CanonicalForm convSingAFactoryA (poly p, const Variable &a, const ring r)
 
poly convFactoryASingA (const CanonicalForm &f, const ring r)
 
CanonicalForm convSingTrPFactoryP (poly p, const ring r)
 
poly convFactoryPSingTrP (const CanonicalForm &f, const ring r)
 

Function Documentation

§ convFactoryAPSingAP()

poly convFactoryAPSingAP ( const CanonicalForm f,
const ring  r 
)

Definition at line 155 of file clapconv.cc.

156 {
157  return convFactoryAPSingAP_R(f,0,rPar(r),r);
158 }
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:590
const ring r
Definition: syzextra.cc:208
poly convFactoryAPSingAP_R(const CanonicalForm &f, int par_start, int var_start, const ring r)
Definition: clapconv.cc:145

§ convFactoryAPSingAP_R()

poly convFactoryAPSingAP_R ( const CanonicalForm f,
int  par_start,
int  var_start 
)

§ convFactoryASingA()

poly convFactoryASingA ( const CanonicalForm f,
const ring  r 
)

Definition at line 257 of file clapconv.cc.

258 {
259  poly a=NULL;
260  poly t;
261  for( CFIterator i=f; i.hasTerms(); i++)
262  {
263  t= p_Init (r->cf->extRing);
264  p_GetCoeff(t, r->cf->extRing)= convFactoryNSingAN( i.coeff(), r );
265  if (n_IsZero(p_GetCoeff(t,r->cf->extRing),r->cf->extRing->cf))
266  {
267  p_Delete(&t,r->cf->extRing);
268  }
269  else
270  {
271  p_SetExp(t,1,i.exp(),r->cf->extRing);
272  a=p_Add_q(a,t,r->cf->extRing);
273  }
274  }
275  if (a!=NULL)
276  {
277  if( r->cf->extRing != NULL )
278  if (r->cf->extRing->qideal->m[0]!=NULL)
279  {
280  poly l=r->cf->extRing->qideal->m[0];
281  if (p_GetExp(a,1,r->cf->extRing) >= p_GetExp(l,1,r->cf->extRing))
282  a = p_PolyDiv (a, l, FALSE, r->cf->extRing); // ???
283  }
284  }
285  return a;
286 }
const poly a
Definition: syzextra.cc:212
#define FALSE
Definition: auxiliary.h:94
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the zero element.
Definition: coeffs.h:468
poly p_PolyDiv(poly &p, const poly divisor, const BOOLEAN needResult, const ring r)
assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes div...
Definition: p_polys.cc:1791
class to iterate through CanonicalForm&#39;s
Definition: cf_iter.h:44
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:843
static number convFactoryNSingAN(const CanonicalForm &f, const ring r)
Definition: clapconv.cc:248
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483
#define NULL
Definition: omList.c:10
#define p_GetCoeff(p, r)
Definition: monomials.h:57
polyrec * poly
Definition: hilb.h:10
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:877
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1243
int l
Definition: cfEzgcd.cc:94

§ convFactoryISingI()

int convFactoryISingI ( const CanonicalForm f)

Definition at line 114 of file clapconv.cc.

115 {
116  if (!f.isImm()) WerrorS("int overflow in det");
117  return f.intval();
118 }
long intval() const
conversion functions
bool isImm() const
void WerrorS(const char *s)
Definition: feFopen.cc:24

§ convFactoryPSingP()

poly convFactoryPSingP ( const CanonicalForm f,
const ring  r 
)

Definition at line 41 of file clapconv.cc.

42 {
43  int n = rVar(r)+1;
44  /* ASSERT( level( f ) <= pVariables, "illegal number of variables" ); */
45  int * exp = (int*)omAlloc0(n*sizeof(int));
46  sBucket_pt result_bucket=sBucketCreate(r);
47  conv_RecPP( f, exp, result_bucket, r );
48  poly result; int dummy;
49  sBucketDestroyMerge(result_bucket,&result,&dummy);
50  omFreeSize((ADDRESS)exp,n*sizeof(int));
51  return result;
52 }
void sBucketDestroyMerge(sBucket_pt bucket, poly *p, int *length)
Definition: sbuckets.h:65
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
void * ADDRESS
Definition: auxiliary.h:115
const ring r
Definition: syzextra.cc:208
static void conv_RecPP(const CanonicalForm &f, int *exp, sBucket_pt result, ring r)
Definition: clapconv.cc:54
sBucket_pt sBucketCreate(const ring r)
Definition: sbuckets.cc:120
p exp[i]
Definition: DebugPrint.cc:39
polyrec * poly
Definition: hilb.h:10
#define omAlloc0(size)
Definition: omAllocDecl.h:211
return result
Definition: facAbsBiFact.cc:76

§ convFactoryPSingTrP()

poly convFactoryPSingTrP ( const CanonicalForm f,
const ring  r 
)

Definition at line 324 of file clapconv.cc.

325 {
326  int n = rVar(r)+1;
327  int * exp = (int*)omAlloc0(n*sizeof(int));
328  poly result = NULL;
329  convRecTrP( f, exp, result , rPar(r), r );
330  omFreeSize((ADDRESS)exp,n*sizeof(int));
331  return result;
332 }
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:590
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
void * ADDRESS
Definition: auxiliary.h:115
const ring r
Definition: syzextra.cc:208
static void convRecTrP(const CanonicalForm &f, int *exp, poly &result, int offs, const ring r)
Definition: clapconv.cc:335
#define NULL
Definition: omList.c:10
p exp[i]
Definition: DebugPrint.cc:39
polyrec * poly
Definition: hilb.h:10
#define omAlloc0(size)
Definition: omAllocDecl.h:211
return result
Definition: facAbsBiFact.cc:76

§ convSingAFactoryA()

CanonicalForm convSingAFactoryA ( poly  p,
const Variable a,
const ring  r 
)

Definition at line 205 of file clapconv.cc.

206 {
207  CanonicalForm result = 0;
208  int e;
209 
210  while ( p!=NULL )
211  {
213  if ( rField_is_Zp_a(r) )
214  {
215  term = n_Int( p_GetCoeff( p, r->cf->extRing ), r->cf->extRing->cf );
216  }
217  else
218  {
219  if ( SR_HDL(p_GetCoeff( p, r->cf->extRing )) & SR_INT )
220  term = SR_TO_INT(p_GetCoeff( p, r->cf->extRing )) ;
221  else
222  {
223  if ( p_GetCoeff( p, r->cf->extRing )->s == 3 )
224  {
225  mpz_t dummy;
226  mpz_init_set( dummy, (p_GetCoeff( p,r->cf->extRing )->z) );
227  term = make_cf( dummy );
228  }
229  else
230  {
231  // assume s==0 or s==1
232  mpz_t num, den;
233  On(SW_RATIONAL);
234  mpz_init_set( num, (p_GetCoeff( p, r->cf->extRing )->z) );
235  mpz_init_set( den, (p_GetCoeff( p, r->cf->extRing )->n) );
236  term = make_cf( num, den, ( p_GetCoeff( p, r->cf->extRing )->s != 1 ));
237  }
238  }
239  }
240  if ( (e = p_GetExp( p, 1, r->cf->extRing )) != 0 )
241  term *= power( a , e );
242  result += term;
243  p = pNext( p );
244  }
245  return result;
246 }
CanonicalForm power(const CanonicalForm &f, int n)
exponentiation
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:521
CanonicalForm num(const CanonicalForm &f)
Definition: int_poly.h:33
return P p
Definition: myNF.cc:203
factory&#39;s main class
Definition: canonicalform.h:75
CanonicalForm make_cf(const mpz_ptr n)
Definition: singext.cc:67
const ring r
Definition: syzextra.cc:208
static FORCE_INLINE long n_Int(number &n, const coeffs r)
conversion of n to an int; 0 if not possible in Z/pZ: the representing int lying in (-p/2 ...
Definition: coeffs.h:551
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
static const int SW_RATIONAL
set to 1 for computations over Q
Definition: cf_defs.h:28
void On(int sw)
switches
#define SR_TO_INT(SR)
Definition: longrat.h:70
#define NULL
Definition: omList.c:10
CanonicalForm den(const CanonicalForm &f)
#define SR_INT
Definition: longrat.h:68
#define pNext(p)
Definition: monomials.h:43
#define p_GetCoeff(p, r)
Definition: monomials.h:57
#define SR_HDL(A)
Definition: tgb.cc:35
return result
Definition: facAbsBiFact.cc:76

§ convSingAPFactoryAP()

CanonicalForm convSingAPFactoryAP ( poly  p,
const Variable a,
const ring  r 
)

Definition at line 120 of file clapconv.cc.

121 {
122  CanonicalForm result = 0;
123  int e, n = r-> N;
124  int off=rPar(r);
125 
126  if (!rField_is_Zp_a(r))
127  On(SW_RATIONAL);
128  while ( p!=NULL)
129  {
130  CanonicalForm term=convSingAFactoryA(((poly)p_GetCoeff(p, r->cf->extRing)),a, r);
131  for ( int i = 1; i <= n; i++ )
132  {
133  if ( (e = p_GetExp( p, i, r )) != 0 )
134  term *= power( Variable( i + off), e );
135  }
136  result += term;
137  pIter( p );
138  }
139  return result;
140 }
CanonicalForm power(const CanonicalForm &f, int n)
exponentiation
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:521
Definition: int_poly.h:33
return P p
Definition: myNF.cc:203
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:590
factory&#39;s class for variables
Definition: factory.h:115
factory&#39;s main class
Definition: canonicalform.h:75
CanonicalForm convSingAFactoryA(poly p, const Variable &a, const ring r)
Definition: clapconv.cc:205
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
const CanonicalForm CFMap CFMap & N
Definition: cfEzgcd.cc:49
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
static const int SW_RATIONAL
set to 1 for computations over Q
Definition: cf_defs.h:28
void On(int sw)
switches
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10
#define p_GetCoeff(p, r)
Definition: monomials.h:57
polyrec * poly
Definition: hilb.h:10
return result
Definition: facAbsBiFact.cc:76

§ convSingPFactoryP()

CanonicalForm convSingPFactoryP ( poly  p,
const ring  r 
)

Definition at line 88 of file clapconv.cc.

89 {
91  int e, n = rVar(r);
92  BOOLEAN setChar=TRUE;
93 
94  p=pReverse(p);
95  poly op=p;
96  while ( p!=NULL )
97  {
99  term=r->cf->convSingNFactoryN(pGetCoeff( p ),setChar, r->cf);
100  if (errorreported) break;
101  setChar=FALSE;
102  for ( int i = n; i >0; i-- )
103  {
104  if ( (e = p_GetExp( p, i, r)) != 0 )
105  term *= power( Variable( i ), e );
106  }
107  result += term;
108  pIter( p );
109  }
110  op=pReverse(op);
111  return result;
112 }
CanonicalForm power(const CanonicalForm &f, int n)
exponentiation
Definition: int_poly.h:33
#define FALSE
Definition: auxiliary.h:94
return P p
Definition: myNF.cc:203
factory&#39;s class for variables
Definition: factory.h:115
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
factory&#39;s main class
Definition: canonicalform.h:75
#define TRUE
Definition: auxiliary.h:98
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123
static poly pReverse(poly p)
Definition: p_polys.h:330
short errorreported
Definition: feFopen.cc:23
#define NULL
Definition: omList.c:10
polyrec * poly
Definition: hilb.h:10
int BOOLEAN
Definition: auxiliary.h:85
return result
Definition: facAbsBiFact.cc:76

§ convSingTrPFactoryP()

CanonicalForm convSingTrPFactoryP ( poly  p,
const ring  r 
)

Definition at line 288 of file clapconv.cc.

289 {
290  CanonicalForm result = 0;
291  int e, n = rVar(r);
292  int offs = rPar(r);
293 
294  while ( p!=NULL )
295  {
296  n_Normalize(p_GetCoeff(p, r), r->cf);
297 
298  // test if denominator is constant
299  if (!p_IsConstantPoly(DEN ((fraction)p_GetCoeff (p,r)),r->cf->extRing) && !errorreported)
300  WerrorS("conversion error: denominator!= 1");
301 
302  CanonicalForm term=convSingPFactoryP(NUM ((fraction)p_GetCoeff(p, r)),r->cf->extRing);
303 
304  // if denominator is not NULL it should be a constant at this point
305  if (DEN ((fraction)p_GetCoeff(p,r)) != NULL)
306  {
307  CanonicalForm den= convSingPFactoryP(DEN ((fraction)p_GetCoeff(p, r)),r->cf->extRing);
308  if (rChar (r) == 0)
309  On (SW_RATIONAL);
310  term /= den;
311  }
312 
313  for ( int i = n; i > 0; i-- )
314  {
315  if ( (e = p_GetExp( p, i,r )) != 0 )
316  term = term * power( Variable( i + offs ), e );
317  }
318  result += term;
319  p = pNext( p );
320  }
321  return result;
322 }
CanonicalForm power(const CanonicalForm &f, int n)
exponentiation
Definition: int_poly.h:33
return P p
Definition: myNF.cc:203
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:590
factory&#39;s class for variables
Definition: factory.h:115
int rChar(ring r)
Definition: ring.cc:684
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
factory&#39;s main class
Definition: canonicalform.h:75
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition: coeffs.h:582
void WerrorS(const char *s)
Definition: feFopen.cc:24
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
static const int SW_RATIONAL
set to 1 for computations over Q
Definition: cf_defs.h:28
void On(int sw)
switches
int i
Definition: cfEzgcd.cc:123
short errorreported
Definition: feFopen.cc:23
#define NULL
Definition: omList.c:10
CanonicalForm convSingPFactoryP(poly p, const ring r)
Definition: clapconv.cc:88
Definition: readcf.cc:156
CanonicalForm den(const CanonicalForm &f)
static BOOLEAN p_IsConstantPoly(const poly p, const ring r)
Definition: p_polys.h:1890
#define pNext(p)
Definition: monomials.h:43
#define p_GetCoeff(p, r)
Definition: monomials.h:57
return result
Definition: facAbsBiFact.cc:76